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Recent attention has focused on the effect of spherical convergence on the nonlinear phase of
Rayleigh-Taylor growth. For instability growth on spherically converging interfaces, modifications
to the predictions of the Layzer model for the secular growth of a single, nonlinear mode have been
reported [D. S. Clark and M. Tabak, Phys. Rev. E 72, 0056308 (2005).]. However, this model is
limited in assuming a self-similar background implosion history as well as only addressing growth
from a perturbation of already nonlinearly large amplitude. Additionally, only the case of single-
mode growth was considered and not the multimode growth of interest in applications. Here, these
deficiencies are remedied. First, the connection of the recent nonlinear results including convergence
to the well-known results for the linear regime of growth is demonstrated. Second, the applicability of
the model to more general implosion histories (i.e., not self-similar) is shown. Finally, to address the
case of multimode growth with convergence, the recent nonlinear single mode results are combined
with the Haan model formulation for weakly nonlinear multimode growth. Remarkably, convergence
in the nonlinear regime is found not to modify substantially the multimode predictions of Haan’s
original model.

PACS numbers: 52.57.Fg,47.20.Ky,47.40.-x

I. INTRODUCTION

The many instances of the Rayleigh-Taylor (RT) insta-
bility [1, 2] have motivated its intensive investigation for
more than the past half-century. In its simplest incar-
nation, the RT instability results from the acceleration
of a dense fluid by a less dense fluid or, analogously, the
dense fluid being supported by the less dense fluid in
the presence of gravity. The linear phase of the instabil-
ity, during which the individual Fourier modes exponen-
tiate in time, has been thoroughly studied in both theory
and experiment and under a variety of driving conditions
and in various geometries [3–9]. A fairly complete under-
standing of this phase of the instability is now believed
to be in hand. The nonlinear phase of the instability,
during which characteristic bubble and spike structures
appear, possibly followed by complicating mixing due to
secondary instabilities, has also been extensively studied
[10–14]. On account of its inherently greater complexity,
however, this phase is generally less well understood and
a subject of continuing investigation.

In particular, attention has recently focused on the ef-
fects of nonlinearity and converging geometry in combi-
nation [15–17], such as occurs at the surface of an im-
ploding inertial confinement fusion (ICF) capsule. The
effect of spherical convergence on RT growth in the lin-
ear regime has long been appreciated, and its potential to
enhance perturbation amplitudes over their planar ana-
logues noted [18–20]. This effect is clearly a deleterious
one to the goal of ICF and must therefore be heeded in
the design of ICF targets [21]. The most recent theoret-
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ical investigations have now suggested that an enhance-
ment effect persists into the nonlinear regime of growth
[22]. These results indicate that enhancements over the
planar predictions, originally due to Layzer [11], can oc-
cur for both the acceleration and deceleration phases of
an ICF implosion, and for the growth of RT spikes as
much as for RT bubbles. However, these recent nonlin-
ear results remain deficient in several respects.

First, in choosing a Layzer-type model as the starting
point to analyze the nonlinear growth regime, the connec-
tion to the initial conditions remains obscure. By design,
the ICF implosions of interest begin with the majority of
unstable modes well within the linear RT growth regime.
To be relevant to realistic target designs, a bridging of the
more recent nonlinear growth results to the well-known
early-time, linear results is then necessary.

Second, the construction of the nonlinear convergent
growth formulae in Refs. [17, 22] necessitated assuming
a self-similar background implosion of the type initially
studied by Kidder [23]. While such implosion histories
afford a physically reasonable (and mathematically con-
venient) model of an ICF implosion (especially during
the early acceleration phase of the implosion), realistic
ICF implosions are in fact much closer to constant accel-
eration implosions rather than to self-similarity. This is
manifestly the case late in the acceleration phase when
the self-similar implosion tends to infinite acceleration.
Conveniently, self-similarity appears to be less of a lia-
bility for the deceleration or stagnation phase where the
pure hydrodynamic motion asymptotes to self-similarity
around the time of peak compression. In either case,
however, generalizing the recent nonlinear results, or
otherwise accessing their applicability, to more general
(i.e., non-self-similar) implosion histories is desirable.

Finally, the nonlinear results have so far dealt only
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with the case of single, pure modes, while the applica-
tions of interest involve the superposition of many unsta-
ble modes growing simultaneously. A direct and simple
way of treating this multimode case is to follow the pro-
cedure outlined by Haan [24]. That enhanced growth has
been predicted for pure, nonlinear modes in the presence
of convergence seems especially to motivate combining
the recent single mode results with the multimode mod-
eling of the type initiated by Haan. Heretofore, conver-
gence has not been explicitly included in the nonlinear
phase of these multimode models, and a dangerous un-
derestimation of the multimode amplitudes might there-
fore be anticipated. A model combining these effects can
be hoped to give a more accurate guide in the design of
implosion capsules where strong convergence and weakly
nonlinear growth are expected.

The objective of this paper is to remedy these three de-
ficiencies and so bring the recent nonlinear growth results
into greater relevancy to ICF target design. This paper
is organized as follows. Sec. II briefly reviews the growth
history for a single mode (linearly and nonlinearly) in the
presence of spherical convergence and demonstrates that
these growth regimes may be smoothly bridged together
in a standard way. Sec. III demonstrates, via simula-
tions, the applicability of the nonlinear regime results to
implosion histories other than those that are self-similar.
The mechanics of Haan’s multimode saturation model
are then summarized in Sec. IV. With this background,
Sec. V presents a model combining both the effect of con-
vergence in the nonlinear phase and the presence of many
modes. Sec. VI concludes.

II. SINGLE MODE GROWTH WITH

SPHERICAL CONVERGENCE

Very soon after the publication of Taylor’s original re-
sults on RT growth at planar interfaces, the linear phase
of Rayleigh-Taylor growth on converging interfaces was
investigated [18, 19]. A particularly convenient expres-
sion for this linear perturbation amplitude on a spheri-

cally imploding surface is that given by Hattori [25]:

ηlin(t) = η0(ℓ)h(t)G(t) (1a)
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Here, ℓ is the perturbation mode number corresponding
approximately to the ratio of the circumference of the un-
perturbed shell to the perturbation wave length. η0(ℓ) is
the initial perturbation amplitude for mode ℓ, and h(t) is
the implosion history or scale factor which is normalized
to unity at the start of the implosion, i.e., h(t = 0) ≡ 1.
During this linear phase, the perturbation shape on the
interface corresponds to a Legendre mode Pℓ(cos θ). This
shape and growth rate are for the special case of rota-
tionally symmetric, i.e., m = 0, modes. Since these have
been shown to be the fastest growing modes linearly and
nonlinearly [26], only these most threatening modes are
considered here.

Eq. (1a) gives only the time-asymptotic amplitude
(i.e., terms decaying exponentially in time are neglected)
and is valid only in the large mode number limit (ℓ ≫ 1).
For ICF applications, this latter condition is not a signifi-
cant constraint. Also, like the nonlinear regime results of
Ref. [17], this result is strictly valid only for self-similar
implosions. However, given that typical implosion his-
tories do not deviate noticeably from self-similarity un-
til late in time and that Eq. (1a) should only ever be
applied in the linear (i.e., early-time) regime, Hattori’s
result may be taken to apply even to general, non-self-
similar implosions provided only the appropriate linear
growth regime is considered. This approximation is es-
sentially the same as that made by Haan in constructing
his multimode model.

In Ref. [22], the nonlinear RT bubble growth rate dur-
ing the acceleration phase of a spherical implosion was
shown to be governed by a pair of coupled, nonlinear
ODEs involving the implosion scale factor h(t) and the
nonlinear bubble amplitude a(t):
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ḣ

h
aȧ
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ḧ

h
a2 . (2b)

Here, the bubble curvature b(t) is given in terms of the
bubble amplitude by

b(t) =
ℓ

4

ℓ + 1

2ℓ − 1
a(t) + c0a

2ℓ(t) (3)

where c0 is an integration constant set by the initial con-

ditions. Over-dots denote time derivatives. ℓ is now the
nonlinear mode number corresponding to the ratio of the
circumference of the unperturbed shell to the nonlinear
perturbation wavelength, i.e., the full width of the bub-
ble. Though the mode shape is no longer a Legendre
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mode, the mode numbers ℓ for the linear and nonlinear
regimes may be taken as equivalent. The constant tc sets
the characteristic time of the implosion and is determined
by the initial and boundary conditions for the pressure
and density. R0 denotes the characteristic length scale of
the implosion, and γ is the usual ratio of specific heats.

While they can easily be integrated numerically, these
highly nonlinear equations do not evidently have a sim-
ple, analytic solution. In the limiting case ℓ ≫ 1, how-
ever, they simplify considerably. First, since a(t) should
be a decreasing function of time for a bubble penetrat-
ing into the dense shell, the second term in Eq. (3)
rapidly becomes negligible compared to the first for suf-
ficiently small values of c0. Only the first term in the
curvature need then be retained at late times. Addition-
ally, Eqs. (2) decouple in the limit of large ℓ. Indepen-
dently, Eq. (2a) reduces to the equation studied by Kid-
der in the context of isentropic, cumulative implosions,
while Eq. (2b) may be solved by a WKB technique. For
γ = 5/3, Eq. (2a) yields the self-similar implosion his-

tory h(t) ≃ hKidder

.
=

√

1 − (t/tc)2 independent of the
perturbation amplitude and mode number. Separately,
the WKB solution of Eq. (2b), treating h(t) as given and
slowly varying relative to a(t), is

a(t) ∼ c±(ℓ)
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with c±(ℓ) constants. This analysis includes the effect of
compressibility of the fluid but, as for the linear regime
formula, Eq. (1a), is again strictly valid only for self-
similar implosions and for large mode numbers ℓ ≫ 1.

In Eq. (4), the amplitude a(t) measures the distance
from the center of the imploding sphere to the tip of
the growing RT bubble in the frame moving with the
imploding interface. Hence, 1 − a(t) represents the con-
ventional “height” of the bubble above the unperturbed
interface. Lengths in the fixed (“lab”) frame can be ob-
tained from the imploding frame simply by multiplying
by the scale factor h(t). Note that Eq. (1a) is writ-
ten in the fixed frame, while Eq. (4) is written in the
imploding frame. Also note that, even in the absence
of acceleration, Eq. (4) suggests that the bubble ampli-
tude can nonetheless grow due to the time-dependence of
h(t). This phenomenon may be interpreted as a nonlinear
equivalent of the Bell-Plesset effect.

The derivation of Eqs. (2) relied only on the locality
in space of the hydrodynamics equations. As such, they
apply equally to the linear as to the nonlinear regimes of
growth and should include solutions of the type given in
Eq. (1a). However, in neglecting the second term in the
bubble curvature, Eq. (3), in order to derive Eq. (4), the
connection to the initial, linear phase of growth has ef-
fectively been lost. Essentially, the ℓ ≫ 1 solution given
by Eq. (4) corresponds to the particular choice of initial
conditions with a curvature at t = 0 commensurate with
c0 = 0. On the other hand, the linear regime solution,
evolving according to Eq. (1a), corresponds to a curva-
ture of 1

4ℓ(ℓ + 1)ηlin(t), since its shape is by construction

a Legendre mode. Matching this curvature to the non-
linear curvature from Eq. (3) at t = 0 requires the choice

c0 =
ℓ

4

ℓ + 1

2ℓ − 1
[2ℓη0(ℓ) − 1] [1 − η0(ℓ)]

−2ℓ
(5)

for which Eqs. (2) appear intractable. Again, a numer-
ical solution can easily be found, but a succinct analyt-
ical approximation remains desirable. Intuitively, it can
be expected that the real solution must smoothly match
together these initial, linear and time-asymptotic, non-
linear curvatures.

A remedy to the intractability of Eqs. (2) when c0 6= 0
is to employ the standard linear-nonlinear matching pro-
cedure as cited in Layzer’s original analysis and at-
tributed to Fermi[11]. This procedure is simply to fol-
low the growth rate given by the linear regime solution
until the perturbation speed η̇lin(t) matches the veloc-
ity of an RT bubble given by the nonlinear regime so-
lution. After this time, localized bubbles of light fluid
can be assumed to rise into the heavy fluid according
to the nonlinear growth rate. For the planar case with
a perturbation wavelength λ and constant gravity g,
this matching velocity corresponds to the Layzer veloc-
ity uLayzer ≃ 0.511

√
λg. The accompanying perturbation

amplitude at the time of matching or saturation depends
merely on the wavelength of the mode, ηsat ∼ λ/2π.

For the present convergent case, a similar procedure
may be followed. Since, asymptotically in time, only the
growing solution of Eq. (4) is significant, the nonlinear
bubble height (in the fixed frame) may be written as

ηnon(t) = h(t)

{

1 − c+(ℓ)

[

h(t)

G(t)

]1/ℓ
}

. (6)

Note that, conveniently, the time dependence in the non-
linear phase is of nearly the same functional form as in
the linear case; merely the dependence on the mode num-
ber is reciprocated. Matching this nonlinear amplitude
and corresponding growth rate to the linear regime val-
ues from Eq. (1a) sets the undetermined constant c+(ℓ)
along with the saturation or matching time
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A uniform approximation bridging the linear and nonlin-
ear bubble amplitudes is then simply

ηuni(t) = ηlin(t)Θ [tsat(ℓ) − t] + ηnon(t)Θ [t − tsat(ℓ)] (7)

with ηlin(t) and ηnon(t) taken from Eqs. (1a) and (6), re-
spectively. Θ(x) is the unit step function.

Fig. 1 plots this uniform single mode bubble amplitude
in the frame of the imploding interface for the representa-
tive mode ℓ = 80. The smooth solid line shows the result
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FIG. 1: Linear and nonlinear single mode growth on a spher-
ically converging interface for mode ℓ = 80. Amplitudes are
plotted in the frame moving with the interface, and length is
normalized to the initial shell radius, i.e., R0 ≡ 1.

of the Fermi construction, Eq. (7), while the dotted line
results from numerically integrating Eqs. (2). For the lat-
ter, the constant c0 was set to the value given in Eq. (5)
so as to match the linear growth in Eq. (1a). The sat-
uration time for these parameters is tsat(ℓ) ≃ 0.51 tc, as
is evident in the figure. Also plotted with a solid line is
the bubble height measured from a two-dimensional (2-
D) numerical simulation run with the HYDRA code [27].
This simulation was run similarly to those described in
Ref. [22], except that an initial perturbation amplitude of
η0(ℓ) ≃ 0.01/ℓ ≃ 0.002 λ was used, i.e., well within the
linear growth regime. Also, to capture accurately the
linear phase of growth, the simulation was run initially
in a Lagrangian mode followed by arbitrary Lagrangian
Eulerian (ALE) relaxation of the mesh after t = 0.1 tc.
The jitter in the simulation results is due to the ALE re-
laxation of the mesh and suggests the accuracy threshold
of the simulation. Here and below, the unperturbed ra-
dius of the sphere has been normalized to unity at t = 0.
Corresponding to the constraint implied in Eqs. (1a) and
(4), a self-similar background h(t) is also used.

The close agreement between these three curves indi-
cates that the Fermi construction is in fact a very good
approximation to the result of following in detail the evo-
lution of the bubble amplitude (and curvature) in the
transition from linear to nonlinear growth. The util-
ity of the Fermi construction in providing a quite sim-
ple but equally accurate analytical approximation to a
result otherwise obtainable only numerically or through
simulations is obvious. By contrast, the dashed line plots
the mode amplitude based on the Fermi construction but
using Layzer’s (planar) saturation velocity, uLayzer (in-
cluding the effect of the changing acceleration and bub-
ble wavelength with convergence). Late in time, a near

FIG. 2: Linear and nonlinear single mode curvature for mode
ℓ = 80 corresponding to the amplitudes shown in Fig. 1. The
dotted curve gives the numerical result, the dashed curve is
the curvature corresponding to the linear growth regime, and
the solid curve is the time-asymptotic nonlinear curvature
(Eq. (3) with c0 = 0).

factor of two difference develops between the prediction
based on planar saturation and that explicitly including
the effect of convergence. Effectively, the results includ-
ing convergence fail to saturate in the conventional sense
but continue growing in a near-exponential fashion. Sim-
ilar agreement between the numerical, Fermi construc-
tion, and simulation results and similar enhancements
over the planar analogues are obtained for a range of
mode numbers.

Finally, Fig. 2 confirms the expected smooth transition
of the bubble curvature from its linear regime value to
the time-asymptotic, nonlinear value. The dotted curve
gives the value of b(t) computed from the same numerical
integration shown in Fig. 1, while the solid curve is the
asymptotic curvature value (Eq. (3) with c0 = 0). The
dashed curve gives the linear regime value. The expo-
nential growth of the numerically computed curvature in
the linear regime followed by a smooth asymptoting to
the nonlinear value is clearly evident. Note that the cur-
vature which corresponds to the uniformly approximate
amplitude given in Eq. (7) would not smoothly follow
the numerical solution in Fig. 2, as the amplitude does
in Fig. 1, but would jump discontinuously from the linear
to the nonlinear regime value at t = tsat(ℓ).

III. NONLINEAR GROWTH DURING

NON-SELF-SIMILAR IMPLOSIONS

Like the linear regime result of Hattori, the bubble am-
plitude a(t) in Eq. (4), and hence the uniform approxi-
mation in Eq. (7), are strictly valid only for self-similar



5

FIG. 3: (Color on-line) Lagrange plot of a typical direct-drive
ICF implosion. The green curve marks a trajectory under-
going constant acceleration, and the red curve marks a self-
similar implosion trajectory with the same initial acceleration.
That the dense region of the imploding shell coincides quite
closely with the green curve indicates that the acceleration of
the shell is nearly constant.

implosions. Although the equation determining h(t) de-
couples from that determining a(t) when ℓ ≫ 1, the value
of h(t) cannot be specified arbitrarily but must be deter-
mined self-consistently from Eq. (2a). This constraint of
the scale factor h(t) to its self-similar value results from
the structure of the nonlinear bubble calculation which
both respects the compressibility of the imploding fluid
and avoids introducing any singularities in the flow field
at the origin.

As already noted, realistic ICF implosion histories are
actually better approximated as having constant accel-
eration rather than being self-similar. Fig. 3 illustrates
this with a Lagrange plot of a typical directly driven ICF
implosion. The coincidence of the green curve, marking
a constantly accelerating trajectory, with the trajectories
of the computational zones making up the dense target
shell indicates that the outer unstable interface of the
shell predominantly experiences a constant acceleration.
The red curve, marking a self-similar implosion trajec-
tory with the same initial acceleration, clearly experi-
ences substantially greater acceleration once more than
half of the acceleration phase has passed.

Within the structure of the current model, such con-
stant acceleration implosion histories cannot be rigor-
ously treated. However, it may be hoped that the ampli-
tude given by Eq. (4) may still apply in an approximate
sense even for a non-self-similar h(t). To the extent that
a self-similar implosion history may be approximated by
a constant acceleration history merely as a Taylor ex-
pansion, i.e., h(t) =

√
1 − t2 ≃ 1 − 1

2 t2, it can certainly
be expected that the bubble amplitude given by Eq. (4),
but computed using a constant acceleration h(t), should

give a reasonable approximation of the amplitude growth
under a constant acceleration drive. This approach is cer-
tainly valid at early times when the self-similar and con-
stant acceleration scale factors are indistinguishable on
the scale of interest. That this approach remains valid
over longer times, when the convergence is strong and
errors may accumulate nonlinearly, is not clear.

In the absence of a rigorous solution, the validity of
Eq. (4) for non-self-similar implosions may at best be ver-
ified by comparison with numerical simulations. Neither
of these approaches is, in the absolute sense, an exact so-
lution to the problem at hand. Agreement between two
results obtained from wholly different approaches (ana-
lytical and numerical) would, however, lend confidence to
the validity of each result individually. At the least, if the
only real objective is a simple and approximate formula
from which to estimate the nonlinear bubble height, and
Eq. (4) is shown to comport with simulation results for
non-self-similar h(t)s, then such a formula is plausibly
had simply by inserting a constant acceleration h(t) into
Eq. (4).

Inserting the constant acceleration history h(t) = 1 −
1
2 t2 into Eq. (4) and choosing the constants c±(ℓ) so that
ȧ(t = 0) = 0 leads directly to

a(t) ∼
{

1

h(t)
cosh

[√
2ℓ sin−1 t√

2

]}−1/ℓ

. (8)

This result should be compared with Eq. (10) of Ref. [22].
The predictions of this formula are compared to the bub-
ble heights measured from 2-D HYDRA simulations in
Fig. 4. Results for modes ℓ = 20, 40, and 80 are shown.
Again, these simulations were run similarly to those de-
scribed in Ref. [22] except that now the pressure source
driving the implosion was adjusted to give an implosion
history of h(t) = 1− 1

2 t2 when the simulation was run in
one dimension, i.e., without the perturbation. Note that,
by the end of the simulations (t/tc ≃ 1.3), the shell has
converged by more than a factor of ∼ 10 (h(t) < 0.1).
The initial radius of the imploding sphere and inward
acceleration of the implosion have been normalized to
unity. Hence, time is effectively measured in units of the
reciprocal square root of the acceleration.

Even though the background implosion is not self-
similar, the agreement appears to be good between the
simulation and WKB results for each mode number. For
comparison, the dashed line gives the analogous bubble
height from the Layzer model including the effect of the
changing bubble wavelength (radius) with convergence.
The bubble can be seen to decelerate over the course
of the implosion due to the progressive decrease in the
bubble wavelength. While the absolute growth driven by
constant acceleration is somewhat less extreme than in
the case of a self-similar implosion (cf. Fig. 4 of Ref. [22]),
the amplitude is still substantially greater than that pre-
dicted by the Layzer formula. Note also that, though the
WKB result was derived in the limit of large ℓ, Eq. (4)
appears to remain valid even for the relatively modest
mode number ℓ = 20.
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FIG. 4: Comparison between normalized bubble heights from
the WKB solution, Eq. (4), (dotted line) and 2-D HYDRA
simulations (solid line) for a constant acceleration implosion
history and mode numbers ℓ = 20, 40, and 80. The result
of the Layzer formula for mode ℓ = 80 is also shown as the
dashed line. Amplitudes are plotted in the frame moving with
the interface, length is normalized to the initial shell radius,
and time is normalized to the square root of the acceleration.

Of course, an infinite variety of non-self-similar implo-
sion histories can be imagined, not merely the constant
acceleration case illustrated here. However, this con-
stant acceleration case, as exemplified in Fig. 3, seems
sufficiently generic that the good agreement displayed
in Fig. 4 should give reasonable confidence in applying
the WKB results to a range of similar, if not perfectly
constant, acceleration histories. Above all, the essential
point remains that the bubble growth with convergence
can substantially exceed that predicted by the Layzer
model and that this amplitude enhancement may rea-
sonably be approximated with Eq. (4). Finally, extrapo-
lating from these results, a uniformly approximate bub-
ble amplitude could also be constructed for the constant
acceleration case following the methods of Sec. II.

IV. HAAN’S MULTIMODE MODEL FOR

WEAKLY NONLINEAR GROWTH

The proceeding discussion has dealt only with the ide-
alized case of growth of a single, pure mode. In ICF and
other applications, unstable interfaces will always have
some finite and random initial roughness, however, so
that growth in the multimode regime will almost invari-
ably be encountered.

The extraordinarily complex interactions of multiple
modes in the transition from linear to nonlinear growth
make a direct, theoretical treatment of the multimode
case extremely difficult. Consequently, approximate,

physically-motivated models have been proposed to de-
scribe this phase. Broadly, these approximate models fall
into the classes of strongly nonlinear bubble merger (or
bubble competition) models, as originated by the work
of Sharp and Wheeler [28, 29], or weakly nonlinear clo-
sure models of the type originated by Haan [24]. In the
context of ICF research, models of the type inspired by
Haan have proven highly useful in the design of implosion
targets, e.g., Ref. [30–34]. Despite the considerable ad-
vances in computing power and in numerical techniques,
the direct numerical simulation of multimode nonlinear
RT growth on an imploding capsule remains a tedious
endeavor, and one fraught with uncertainty. Even in the
most sophisticated and spatially resolved simulations, nu-
merical diffusion and the effects of extensive grid remap-
ping compete with the instability growth being modeled
to an often uncertain degree. Quasi-analytic models,
such as Haan’s model, hence provide both a guide in
assessing the approximate behavior of a target design
before detailed simulations are undertaken as well as a
rough estimate against which to benchmark those simu-
lation.

The essential ingredient of Haan’s multimode satura-
tion model is to include the contribution of neighboring
modes to the saturation amplitude of any given mode.
In the single mode case discussed above, a mode satu-
rates at an amplitude comparable to some fraction of its
wavelength, ηsat ∼ λ/2π, or ηsat ∼ h(t)/ℓ in the spheri-
cal case. Haan’s model recognizes that, in the presence
of a spectrum of initial modes, this nonlinear satura-
tion amplitude may be reached by a coherent sum of
modes of comparable wavelengths long before any single
mode reaches its saturation amplitude in isolation. By
assuming random phasing between neighboring modes,
a simple argument leads to a saturation amplitude of
S(ℓ) = νh(t)/ℓ2 for any given mode in the presence of
many modes, i.e., the saturation amplitude is reduced
by a factor of ν/ℓ from the single mode value h(t)/ℓ on
account of the contributions of neighboring modes. The
parameter ν characterizes the spectral extent over which
the modes sum coherently and is adjusted to fit multi-
mode experimental data. A value of ν ∼ 4.0 is generally
considered suitable [35].

After introducing this reduced saturation amplitude,
the dynamics of each mode in Haan’s model is assumed
to follow the single mode Fermi construction as outlined
above. The transition from linear to nonlinear, secular
growth merely occurs at this much reduced multimode
saturation amplitude. Specifically, for any given linear
growth amplitude ηlin(t), Haan defines the corresponding
nonlinear growth amplitude and saturation time to be

ηnon(t) = S(ℓ)

{

1 + ln

[

ηlin(t)

S(ℓ)

]}

(9a)

tsat(ℓ)
.
= {t|ηlin(t) = S(ℓ)} . (9b)

Other authors have demonstrated good agreement be-
tween 2-D planar simulations and Haan’s model, or ex-
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tensions of his model [36, 37]. Favorable agreement with
planar experiments has also been reported [38].

Haan’s construction of the nonlinear amplitude as the
logarithm of the linear amplitude (a construction which
he attributes originally to the work of Crowley [39]) is
motivated by the single mode solution at a classical, pla-
nar interface. For this case, the linear growth is purely
exponential in time such that Eq. (9a) yields the linear
growth with time to be expected from the Layzer model,
albeit with the much reduced bubble velocity correspond-
ing to the lower saturation amplitude. For the spherically
convergent case, Haan employs Hattori’s Eq. (1a) in the
linear regime and the corresponding nonlinear amplitude
is calculated from Eq. (9a). In practice, numerical sim-
ulations are also often used to extract the linear regime
single mode growth factors, i.e., h(t)G(t) from Eq. (1a),
by starting from artificially low initial perturbation am-
plitudes. The linear RT amplitude is then obtained sim-
ply by multiplying by the actual initial perturbation am-
plitude η0(ℓ), and the nonlinear amplitude follows form
Eq. (9a). The justification for this nonlinear amplitude
in the convergent case is by no more than an extrapo-
lation from the planar problem, however. Whether this
is the correct form at a converging interface remains an
open question, especially when extrapolations based on
uLayzer have been shown to underestimate substantially
the single mode amplitude, as in Fig. 1.

V. MULTIMODE NONLINEAR GROWTH

INCLUDING THE EFFECT OF CONVERGENCE

The question of the validity of Eq. (9a) with conver-
gence may be resolved by reformulating Haan’s model to
include explicitly the nonlinear convergent growth for-
mula from Sec. II. To do so, Haan’s formulation of the
nonlinear amplitude in terms of a logarithm of the lin-
ear amplitude must be replaced by directly matching to-
gether the linear and nonlinear growth formulae, as in
Sec. II, but at the reduced, multimode saturation am-
plitude S(ℓ). This new matching amplitude necessitates
introducing a second constant into the nonlinear growth
formula, Eq. (6), which represents the radial location of
the bubble apex at the time of saturation, i.e.,

ηnon(t) = h(t)

{

const.(ℓ) − c+(ℓ)

[

h(t)

G(t)

]1/ℓ
}

. (10)

As in the single mode case, matching this nonlinear mode
amplitude and growth rate to the linear amplitude and
growth rate at the given saturation amplitude S(ℓ) de-

FIG. 5: Linear and nonlinear multimode amplitudes for
ℓ = 20, 40, and 80 plotted in the frame moving with the im-
ploding interface. The solid curves give the results of Eq. (11),
while the dotted curves (only barely distinguishable from the
solid curves at late times) are the results of Haan’s formula,
Eq. (9a). The dashed curve gives the result that would be
predicted by the planar saturation rule for ℓ = 20. A non-
self-similar drive h(t) = 1 −

1

2
t2 is used in calculating each

curve, and a representative initial perturbation spectrum of
η0(ℓ) = 0.1/

`

1 + 0.1ℓ2
´

has been chosen. Note that, in com-
paring the single mode growth history in Fig. 1 to the multi-
mode result, the earlier transition to nonlinear growth in the
presence of many modes results in a much reduced nonlinear
multimode amplitude relative to the single mode counterpart.

termines the two constants as well as the saturation time

const.(ℓ) =
ν

ℓ

{

1

ℓ
+

[

1 − d lnh(t)

d lnG(t)

]−1
}∣

∣

∣

∣

∣

t=tsat(ℓ)

c+(ℓ) =
ν

ℓ

[

ℓ2

ν
η0(ℓ)h(t)

]−1/ℓ [

1 − d ln h(t)

d lnG(t)

]−1
∣

∣

∣

∣

∣

t=tsat(ℓ)

tsat(ℓ) ≃ G−1

[

ν

ℓ2η0(ℓ)

]

.

The multimode uniformly approximate bubble amplitude
is then, just as in Eq. (7),

ηuni(t) = ηlin(t)Θ [tsat(ℓ) − t] + ηnon(t)Θ [t − tsat(ℓ)] (11)

but now with ηnon(t) given by Eq. (10) and tsat(ℓ) by the
multimode saturation time.

Fig. 5 plots the resulting amplitudes for modes ℓ = 20,
40, and 80 for the multimode convergent case, Eq. (11).
For comparison, the results of Haan’s formula, Eq. (9a)
using Hattori’s Eq. (1a), are shown as the dotted lines. A
non-self-similar drive h(t) = 1− 1

2 t2 has been used in cal-
culating each curve, and a representative initial pertur-
bation spectrum of η0(ℓ) = 0.1/

(

1 + 0.1ℓ2
)

has been cho-
sen. Although they have been reached by seemingly very
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different approaches, the results of Eqs. (9a) and (11) are
virtually indistinguishable in the figure. The congruence
of these curves should not, however, be interpreted as in-
dication that convergence does not modify the nonlinear
phase of growth in the multimode case. By contrast, the
dashed line gives the result that would be predicted by
the planar saturation rule for ℓ = 20, i.e., simply extrap-
olating the bubble amplitude as growing at the velocity
established at the time of saturation. This amplitude
is clearly much less than that from Eq. (11) or Haan’s
result. Instead, Fig. 5 should be taken as confirmation
that the logarithm construction proposed by Haan for
the nonlinear amplitude is in fact the appropriate proce-
dure to follow in the convergent case, just as it is in the
planar case.

The agreement evidenced by Fig. 5 may be seen analyt-
ically by noting the identity xε ∼ 1+ε lnx for ε → 0 and
x > 0. Recalling that ℓ ≫ 1 is assumed here throughout,
this approximation can be seen to transform the conver-
gent nonlinear multimode result, Eq. (10), into Haan’s
formula, Eq. (9a), up to logarithmic corrections. That
this result is possible hinges on the similarity in the time
dependence between Eqs. (1a) and (6) already remarked
in Sec. II. In effect, the form chosen by Haan for the
nonlinear regime, based simply on an extrapolation of
the planar results, coupled with Hattori’s linear regime
results including convergence, conveniently approximates
the results of a calculation explicitly including the effect
of convergence for both the linear and nonlinear regimes.
While the validity of the logarithm construction to other
than planar growth might have been anticipated, the re-
sults of this section give a more rigorous justification of
this approximation. Further, based on the generality of
this identity, it should also be noted that this result
applies independently of the acceleration history h(t),
i.e., is valid for self-similar and constant acceleration his-
tories alike provided the condition ℓ ≫ 1 is satisfied.

The results presented in this section should lend confi-
dence to the estimates of RT growth made using Haan’s
model. Of course, it must also be borne in mind that
these results are valid only in so far as the underlying
analysis in Haan’s model, and particularly the saturation
amplitude S(ℓ), are a valid representation of the nonlin-
ear, multimode development of the RT instability. This
has proven a contentious issue in the past, especially in
the model’s application of a Fourier mode decomposition
to the nonlinear growth regime. Nevertheless, on account
of its broad usage in the ICF design context, assessing the
impact on Haan’s model made by the recent results on
nonlinearity and convergence is certainly warranted.

VI. CONCLUSIONS

In summary, recent results on the effect of spherical
convergence on the nonlinear phase of Rayleigh-Taylor
growth have been generalized in three important re-
spects. Each of these generalization brings these results

into greater relevance for ICF target design.
First, the connection of the nonlinear phase of growth

in converging geometry to the well-known linear growth
phase has been demonstrated. As a result, a fairly sim-
ple, uniformly valid approximation for the bubble am-
plitude in the presence of convergence is found. The
crucial factor in this connection is the evolution of the
perturbation curvature from the linear regime value to
the time-asymptotic, nonlinear regime value.

Second, the previous nonlinear regime results, which
assumed a self-similar implosion history, were shown to
remain valid even for the more typical non-self-similar,
constant acceleration implosions. Since self-similarity is
an intrinsic ingredient of the nonlinear model, its validity
for other implosion histories cannot be rigorously demon-
strated and could only be suggested by comparison with
numerical simulations.

Lastly, the previous results for single mode nonlinear
RT growth with convergences have been combined with
the multimode model of Haan to develop a multimode
nonlinear RT model which correctly incorporates the ef-
fect of convergence. Despite substantially enhancing sin-
gle mode nonlinear growth, explicitly including conver-
gence in the nonlinear phase is found only slightly to
modify the multimode nonlinear amplitude from the pre-
dictions of Haan’s original formula. This is due to the
particular form chosen by Haan in constructing his mul-
timode model. In fact, in the limit of large mode num-
bers, explicitly including convergence for the nonlinear
regime leads only to logarithmic corrections to Haan’s
original result. While a substantial underestimation of
bubble growth is suggested by the discrepancy shown
in Fig. 1, Haan’s formula, Eq. (9a), effectively already
captures these effects of nonlinearity and convergence in
combination. This last result should be of particular in-
terest in connection with the many RT growth predic-
tions made using Haan’s model.

The possible generalizations of the results presented
in Ref. [22] have not been fully exhausted in this pa-
per. Foremost, only the acceleration phase of RT bubble
growth has been addressed here. The cases of deceler-
ation phase growth and the growth of RT spikes, also
outlined for the single mode, nonlinear case in Ref. [22],
could likewise be treated similarly to the analysis given
here for acceleration phase bubbles. Ablation of the un-
stable interface is also a critical effect in ICF and there-
fore deserves to be included in the analysis of both the
linear and nonlinear regimes. Finally, the extension of
the present spherical results to cylindrical interfaces is
obvious and should be straightforward.
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